
Final projects for Analysis and Topology II

(draft, subject to further modifications)

Let p be a prime number. The field Qp of p-adic numbers can be viewed as a non-Archimedean
counterpart of the field R. The purpose of these projects is to have a first understanding about
the field Qp, and the p-adic analysis compared with the analysis over R.

Background

Let x 6= 0 be a rational number. Write x = pn · ab , with a, b, n ∈ Z such that b 6= 0 and that
p - ab. Set

|x|p := p−n ∈ R,

and call it the p-adic absolute value (or the p-adic valuation) of x. By convention, we set
also |0|p = 0. The following proposition is crucial in the p-adic analysis (especially the strong
triangle inequality), whose proof is left to the interested readers.

Proposition 0.1. The p-adic absolute value |x|p is well-defined. Moreover, we have

• for x ∈ Q, |x|p ≥ 0, with equality if and only if x = 0;

• for x, y ∈ Q, |xy|p = |x|p|y|p;

• (strong triangle inequality) for x, y ∈ Q, |x+ y|p ≤ max{|x|p, |y|p}.

In this way we deduce a metric on Q, called the p-adic metric, and the induced topology on
Q is called the p-adic topology. For the remaining part of this notes, unless mention explicitly
the contrast, we will consider Q as a metric space with respect to the p-adic metric above. One
checks that Q is not complete with respect to the p-adic metric. Let

Qp

be the completion of (Q, | |p). By continuity, the addition and the multiplication extend to Qp,
and Qp becomes naturally a field. Moreover the p-adic absolute value on Q extends to a map

| |p : Qp −→ R≥0,

which is again referred as to the p-adic absolute value on Qp. Let

Zp := {x ∈ Qp | |x|p ≤ 1}.

By the strong triangle inequality above, one checks that Zp ⊂ Qp is a subring, called the ring
of p-adic integers. Furthermore, we have natural inclusions

Q ⊆ Qp, and Z ⊆ Zp.
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1 Project I: the topology of Qp

.

Exercise 1.1. (1) Show that, for any x ∈ Qp and for any real number r > 0, the following sets

B(x, r) := {y ∈ Qp | |y−x|p ≤ r}, B̊(x, r) := {y ∈ Qp | |y−x|p < r}, ∂B(x, r) := B(x, r)\B̊(x, r)

are all open and closed.

(2) For n ∈ Z, show that B(0, p−n) = pnZp and B̊(0, p−n) = pn+1Zp.

(3) Show that, as a topological space, Qp is totally disconnected: that is, the singletons {x}, for
x ∈ Qp, and the empty set ∅ are the only connected subsets of Qp.

(4) Show that Zp is a compact subset of Qp.

Exercise 1.2. (1) Show that, a series
∑∞

n=1 xn of elements in Qp converges if and only if
limn→∞ xn = 0.

(2) Show that every element x ∈ Qp can be written in a unique way as

x =
∑
i∈Z

aip
i, ai ∈ I := {0, . . . , p− 1} (1)

such that ai = 0 for i� 0. Furthermore, x ∈ Zp if and only if ai = 0 for all i < 0. Compute
the p-adic expansion of −1 in Qp.

(3) Recall the inclusion Q ⊆ Qp. Show that, for x ∈ Qp, x ∈ Q if and only if the coefficients ai’s
in its p-adic expansion (1) is periodic, i.e., ∃m ∈ Z and 0 6= n ∈ N such that ai = ai+n for
every i ≥ m.

(4) Let
∏

N I be a product of countably many copies of I indexed by N. Show that the map

Zp −→
∏
N
I,

∞∑
i=0

aip
i 7→ (a0, a1, . . .)

is a homeomorphism. Here we equip I with the discrete topology, and
∏

N I with the product
topology.

(5) Show that Qp is not homeomorphic to R. For different prime numbers p 6= q, are Qp and Qq

homeomorphic to each other? Please justify your assertion.

Exercise 1.3. In this exercise, we are looking for subsets of some Euclidean space Rn which
are homeomorphic to Qp (i.e., "models" of Qp). For simplicity, here we merely illustrate some
examples in the case p = 2 or 3.

(1) Show that the following map

Z2 −→ R, x =
∞∑
i=0

ai
2i
7→ 2

3

∞∑
i=1

ai
3i

is continuous, and defines a homeomorphism of Z2 onto its image. Can you recognize its
image?
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(2) Consider R2, e1 = (1, 0) and e2 = (12 ,
√
3
2 ). Let

ν : {0, 1, 2} −→ R2

be the map given by ν(0) = 0, ν(1) = e1 and ν(2) = e2. Let b > 1 be a real number. Consider
the map

ψ : Z3 −→ R2,
∞∑
i=0

ai3
i 7→ (b− 1)

∞∑
i=0

ν(ai)

bi+1
.

Show that ψ is continuous. Moreover,

(a) If b > 2, ψ is injective, and gives a homeomorphism from Z3 onto its image.

(b) Draw a picture of im(ψ) ⊂ R2 when b = 3.

(c) What happens if b = 2?

(d) Extend the construction above to a model of Q3 in R2.

2 Project 2: elementary calculus over Qp

Exercise 2.1. Let
∑∞

n=1 an be a series of elements in Qp.

(1) Show that, if
∑

n an converges, it converges unconditionally, i.e., for any reordering of the
terms an → a′n, the series

∑
n a
′
n also converges.

(2) Compare (1) to what happens in the real case.

Exercise 2.2. In this exercise, we will show that one cannot have a reasonable ordering "≤" as
in the real case. Nevertheless, an analogous notion of "sign" can be defined for Qp.

(1) Show that there does not exist any partial order ≤ on Qp satisfying the properties below:

• −1 ≤ 0 ≤ 1;

• "≤" is compatible with the addition and the multiplication of Qp in the evident way;
and

• for a sequence {an} of elements in Qp converging to a ∈ Qp, if an ≥ 0 for every n, then
a ≥ 0.

(2) For K = R or Qp, let K∗ = K \ {0}. For x, y ∈ K∗, we denote by [x, y] the smallest disk1

containing both x and y. Define x ∼ y if 0 /∈ [x, y].

(a) Show that "∼" is an equivalence relation on K∗.

(b) Assume K = R. Describe all the equivalence classes of R∗ relative to ∼. Show that the
map

sgn : R∗/ ∼−→ {±1} ⊂ R, [x] 7→ x

|x|
is well-defined and is bijective.

(c) What can you say when K = Qp?

Exercise 2.3. A function f : Qp → Qp is called locally constant, if for each x ∈ Qp, there exists
some open subset U 3 x, such that f is constant on U .

1That is, a subset of the form {a ∈ K | |a− a0| ≤ r0} for some a0 ∈ K and r0 ≥ 0.
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(1) Show that locally constant functions on Qp are continuous. Moreover, they are differen-
tiable with derivation identically 0. Also what are the continuous locally constant real-valued
function defined over R?

(2) Show that, for every continuous function f : Qp → Qp, and for any real number ε > 0, there
exists some locally constant function g : Qp → Qp so that

|f(x)− g(x)| < ε, ∀x ∈ Qp.

If moreover the image of f is contained in some compact subset of Qp, show that we can even
choose locally constant function g so that it has only finitely many different values.

(3) Consider the following function

f : Qp −→ Qp,
∑
n≥N

anp
n 7→

∑
n≥N

anp
2n.

Show that f is injective, continuous and differentiable, with derivation identically 0.

3 Project 3: continuous functions over Zp
Recall the inclusion Q ⊂ Qp, which induces an inclusion N ⊂ Zp. In the following, a sequence
{xn}n∈N a elements in Qp is often identified with the map below defined over N:

f : N −→ Qp, n 7→ xn.

Exercise 3.1. Show that N is dense in Zp. Deduce that, for a sequence {xn} of elements in Qp,
there exists at most one continuous function g : Zp → Qp such that g(n) = xn for every n ∈ N.

If we can find such a continuous function g as above, we then say that the sequence {xn} can
be interpolated.

Exercise 3.2. Let {xn}n∈N be a sequence of elements in Qp, with f : N→ Qp the corresponding
map. Show that the following assertions are equivalent.

(1) The sequence {xn} can be interpolated.

(2) The map f is uniformly continuous. Here N is viewed as a subset of Qp.

(3) For any ε > 0, there exists an integer N > 0, such that n = m+ pN implies |xn − xm|p < ε.

Exercise 3.3. (1) Let {an} be a nonconstant Cauchy sequence of p-adic numbers. Show that it
cannot be interpolated.

(2) Show that, for a ∈ Zp, the sequence 1, a, a2, . . . can be interpolated if and only if a ∈ 1+pZp.2.

For n ∈ N, let (
x

n

)
:=

x(x− 1) · · · (x− n+ 1)

n!
.

In particular,
(
x
0

)
= 1 by convention.

Exercise 3.4. (1) Show that, viewed as a function on x,
(
x
n

)
is uniformly continuous on Zp,

and
(
x
n

)
∈ Zp for all x ∈ Zp.

2This allows us to consider the continuous exponential function ax, x ∈ Zp
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(2) Let {an} be a sequence of elements in Qp, let

F (x) :=

∞∑
n=0

an

(
x

n

)
.

Show that this series converges on Zp if and only if limn→∞ an = 0.

For {xn} a sequence of elements in Qp, with f : N→ Qp the corresponding map, let

x∗n :=

n∑
k=0

(−1)k
(
n

k

)
xn−k.

The interpolation series of {xn}, or equivalently of f , is given by the following formula

f∗(x) =
∞∑
n=0

x∗n

(
x

n

)
.

Exercise 3.5. (1) Show that f = f∗ as a function defined over N.

(2) If f admits a second representation

f(x) =
∞∑
n=0

an

(
x

n

)
, x ∈ N,

show that an = x∗n.

Exercise 3.6 (Mahler’s Theorem). Let f : N → Qp be a uniformly continuous function. Then
the interpolation series f∗ converges uniformly to a uniformly continuous function over Zp. As
a corollary, show that, every continuous function F : Zp → Qp can be uniformly approximated
by polynomials.3

3Compared with the real case, the way of the approximation depends naturally on the function F in the p-adic
case.
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