Final projects for Analysis and Topology 11

(draft, subject to further modifications)

Let p be a prime number. The field Q,, of p-adic numbers can be viewed as a non-Archimedean
counterpart of the field R. The purpose of these projects is to have a first understanding about
the field Q,, and the p-adic analysis compared with the analysis over R.

Background

Let z # 0 be a rational number. Write x = p" - ¢, with a,b,n € Z such that b # 0 and that
p1ab. Set
|z, =p ™" €R,

and call it the p-adic absolute value (or the p-adic valuation) of z. By convention, we set
also [0], = 0. The following proposition is crucial in the p-adic analysis (especially the strong
triangle inequality), whose proof is left to the interested readers.

Proposition 0.1. The p-adic absolute value |x|, is well-defined. Moreover, we have
o forx € Q, |x|[, > 0, with equality if and only if x = 0;
o forz,y €Q, ayly = 2lplyly;
e (strong triangle inequality) for z,y € Q, |z + y|, < max{|z|p, |y|p}

In this way we deduce a metric on Q, called the p-adic metric, and the induced topology on
Q is called the p-adic topology. For the remaining part of this notes, unless mention explicitly
the contrast, we will consider Q as a metric space with respect to the p-adic metric above. One
checks that Q is not complete with respect to the p-adic metric. Let

Qp

be the completion of (Q,| |,). By continuity, the addition and the multiplication extend to Q,,
and Q, becomes naturally a field. Moreover the p-adic absolute value on Q extends to a map

| p: Qo — Rxo,
which is again referred as to the p-adic absolute value on Q,. Let
Ly :={z € Q| |z], <1}

By the strong triangle inequality above, one checks that Z, C Q, is a subring, called the ring
of p-adic integers. Furthermore, we have natural inclusions

QCQp, and ZCZ,



1 Project I: the topology of Q,

Exercise 1.1. (1) Show that, for any x € Q, and for any real number r > 0, the following sets

o

B(,r):={y € Q| ly—zl, <7}, Bla,r):={yeQ|ly—zl, <r}, 9B(z,r):=B(z,r)\B(z,7)
are all open and closed.
(2) Forn € Z, show that B(0,p™") = p"Z, and B(0,p ") = P17,

(3) Show that, as a topological space, Q, is totally disconnected: that is, the singletons {x}, for
z € Qp, and the empty set ) are the only connected subsets of Q.

(4) Show that Z, is a compact subset of Q.

Exercise 1.2. (1) Show that, a series > .- x, of elements in Q, converges if and only if
lim,, oo z, = 0.

(2) Show that every element x € Q, can be written in a unique way as
:E:Zaipi, a; €I :={0,...,p—1} (1)
i1€EZ

such that a; = 0 for i < 0. Furthermore, x € Zy, if and only if a; = 0 for all i < 0. Compute
the p-adic expansion of —1 in Q.

3) Recall the inclusion Q C Q,. Show that, for x € Q,, x € Q if and only if the coefficients a;’s
P P
in its p-adic expansion (1)) is periodic, i.e., Im € Z and 0 # n € N such that a; = a4y, for
every v > m.

(4) Let [ 1 be a product of countably many copies of I indexed by N. Show that the map

[ee]
Zp—>HI, Zaipzr—)(ao,al,...)
N =0

is a homeomorphism. Here we equip I with the discrete topology, and [ [y I with the product
topology.

(5) Show that Qy, is not homeomorphic to R. For different prime numbers p # q, are Q, and Qq
homeomorphic to each other? Please justify your assertion.

Exercise 1.3. In this exercise, we are looking for subsets of some Fuclidean space R™ which
are homeomorphic to Q, (i.e., "models" of Qp). For simplicity, here we merely illustrate some
examples in the case p = 2 or 3.

(1) Show that the following map

(] K
ZQ — R, xr = E ? — g §
=0 i=1

is continuous, and defines a homeomorphism of Zo onto its image. Can you recognize its
image?



(2) Consider R?, ey = (1,0) and ez = (3, @) Let
v:{0,1,2} — R?

be the map given by v(0) =0, v(1) = e1 and v(2) = ea. Let b > 1 be a real number. Consider
the map

S i o v(ai)
ViZs— R D a3t (0-1)) oy
1=0 =0

Show that 1 is continuous. Moreover,

(a) If b > 2, ¢ is injective, and gives a homeomorphism from Zs onto its image.

(b) Draw a picture of im(y)) C R? when b = 3.

(¢) What happens if b= 2%
)

(d) Extend the construction above to a model of Q3 in R2.

2 Project 2: elementary calculus over Q,

Exercise 2.1. Let Y > | a, be a series of elements in Q.

(1) Show that, if ), an converges, it converges unconditionally, i.e., for any reordering of the
terms a, — al,, the series Y a;, also converges.

(2) Compare (1) to what happens in the real case.

Exercise 2.2. In this exercise, we will show that one cannot have a reasonable ordering "< as
in the real case. Nevertheless, an analogous notion of "sign" can be defined for Q.

(1) Show that there does not exist any partial order < on Q, satisfying the properties below:

e —1 <0<,
o "< s compatible with the addition and the multiplication of Q, in the evident way;

and

e for a sequence {an} of elements in Q, converging to a € Qy, if ap, > 0 for every n, then
a > 0.

(2) For K =R or Qp, let K* = K\ {0}. For xz,y € K*, we denote by [x,y] the smallest diskﬂ
containing both x and y. Define x ~y if 0 ¢ [z, y].

(a) Show that "~" is an equivalence relation on K*.

(b) Assume K = R. Describe all the equivalence classes of R* relative to ~. Show that the
map
sgn:R*/ ~— {£1} CR, [2] — %
x
1s well-defined and is bijective.

(c) What can you say when K = Q,?

Exercise 2.3. A function f : Q, — Q, is called locally constant, if for each x € Qp, there exists
some open subset U 3 x, such that f is constant on U.

!That is, a subset of the form {a € K | |a — ao| < 7o} for some ag € K and ¢ > 0.



(1) Show that locally constant functions on Q, are continuous. Moreover, they are differen-
tiable with derivation identically 0. Also what are the continuous locally constant real-valued
function defined over R?

(2) Show that, for every continuous function f : Qp, — Qp, and for any real number € > 0, there
exists some locally constant function g : Q, — Q, so that

[f(x) =g(@)[ <e, Vo eQ

If moreover the image of f is contained in some compact subset of Qp, show that we can even
choose locally constant function g so that it has only finitely many different values.

(3) Consider the following function

[ Qp — Qp, Z anpp" Z anp®".

n>N n>N

Show that f is injective, continuous and differentiable, with derivation identically 0.

3 Project 3: continuous functions over 7Z,

Recall the inclusion Q C Q,, which induces an inclusion N C Z,. In the following, a sequence
{xn}nen a elements in Q,, is often identified with the map below defined over N:

f*N—Qp, n~— xz,.

Exercise 3.1. Show that N is dense in Z,. Deduce that, for a sequence {xy} of elements in Qp,
there exists at most one continuous function g : Z, — Q, such that g(n) = x,, for every n € N.

If we can find such a continuous function g as above, we then say that the sequence {z,} can
be interpolated.

Exercise 3.2. Let {xy,}nen be a sequence of elements in Qp, with f : N — Q, the corresponding
map. Show that the following assertions are equivalent.

(1) The sequence {x,} can be interpolated.
(2) The map f is uniformly continuous. Here N is viewed as a subset of Q.
(3) For any € > 0, there exists an integer N > 0, such that n = m + p~ implies |xn, — Tpm|p < €.

Exercise 3.3. (1) Let {an} be a nonconstant Cauchy sequence of p-adic numbers. Show that it
cannot be interpolated.

(2) Show that, for a € Z,, the sequence 1, a, a?, ... can be interpolated if and only if a € 1+pZy, E|

For n € N, let

n n!

(x) w@—1)(z—n+1)

In particular, (ij) =1 by convention.

Exercise 3.4. (1) Show that, viewed as a function on x, (z) is uniformly continuous on Zyp,
and ( ) € Zy for all x € Zy,.

x
n

2This allows us to consider the continuous exponential function a%, = € Ly



(2) Let {an} be a sequence of elements in Q,, let

F(z) = nz:;]an (i)

Show that this series converges on Zy if and only if lim,,_, an = 0.
For {x,} a sequence of elements in Qp, with f : N — Q, the corresponding map, let
- n
xy = (—1)k<k>xn_k.
k=0
The interpolation series of {xz,}, or equivalently of f, is given by the following formula
= x
)= (n)
n=0
Exercise 3.5. (1) Show that f = f* as a function defined over N.

(2) If f admits a second representation

£(x) :ian<i) z €N,

n=0

show that an, = x,.

Exercise 3.6 (Mahler’s Theorem). Let f : N — Q, be a uniformly continuous function. Then
the interpolation series f* converges uniformly to a uniformly continuous function over Z,. As
a corollary, show that, every continuous function F : Z, — Q, can be uniformly approzimated
by polynomialsﬁ

3Compared with the real case, the way of the approximation depends naturally on the function F in the p-adic
case.
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